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Abstract. Low resolution features in the spectra of classically chaotic atomic and molecular systems are
known to be related to recurrences induced by classical periodic motions. In this paper we study how such
characteristics reveal in the LiNC/LiCN isomerizing molecular system, and describe how the transition
from regularity to classical chaos that takes place in this system shows up at quantum level in the structure
of the corresponding wavefunctions in the form of “scars”. To this end we use some projection techniques,
based on the propagation of wave packets, which have been developed in our laboratory. In this way some
regions at the border of the chaotic region can be detected, in which the systematics of “scar” formation
can be studied at a very elementary level, without complications due to the high level density which are
customarily used in this type of studies in order to achieve the semiclassical limit.

PACS. 05.45.+b Theory and models of chaotic systems – 03.65.Sq Semiclassical theories and applications

1 Introduction

Modern spectroscopic techniques provides a wealth of in-
formation about atoms and molecules, from data con-
cerning their structural characteristics to valuable insight
about related dynamical processes, such as photodissocia-
tion, isomerization reactions, intramolecular energy trans-
fer, etc. [1].

Typical studies in traditional vibrational spectroscopy
were usually concerned only with low lying vibrational
states, in which the nuclei move in a region localized
around the minimum of the Born-Oppenheimer potential
energy surface. Perturbations were also considered in the
form of (weak) anharmonicities, being responsible for over-
tone and combination frequencies [2]. In this regime, the
intramolecular dynamics are completely regular. Spectra
consist, at least in the ideal case, of a progression of bands,
corresponding to the different excitations in each normal
mode, being in principle easily assignable, due to the lack
of irregularities.

This simplicity is a reflection of the fact that the corre-
sponding wave functions exhibit a very regular nodal pat-
tern [3], where the corresponding quantum numbers can
also be assigned easily (by visual inspection, for exam-
ple). Nonetheless, special attention should be paid to the
case where classical resonances are present. When these
classical features are important [4,5], they have a pro-
found influence on the nodal structure of wave functions,
as demonstrated by Heller et al. [6].
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At higher levels of excitation the dynamics of molec-
ular systems change drastically, and the interactions be-
tween normal modes [4,5] make the structure of the spec-
tra to become more complicated. From a classical point
of view, this behaviour is well-understood in terms of the
KAM (Kolmogorov-Arnold-Moser) theorem [7], which dic-
tates that, as the perturbation induced by increasing the
energy grows, thus deviating from the quadratic regime,
more regular tori are destroyed, rendering a multitude of
resonant chains of islands, overlapping bands of stochastic-
ity, and embedded cantori acting as dynamical bottlenecks
[8]. Non-linear interactions among normal modes lead to
irreversible intramolecular vibrational energy flow, which
is controlled by all classical structures mentioned above.
Also, the rate of many intramolecular dynamical pro-
cesses: unimolecular decomposition, isomerization, etc., is
determined by this intramolecular vibrational relaxation
(IVR) [9].

Recently, the traditional approach has changed im-
portantly by the introduction of many new spectroscopic
techniques, such as IR overtone excitation, multiphoton
excitation, stimulated emission pumping (SEP) or elec-
tron photodetachment [10,11], in which extensive regions
of the potential energy surface, sometimes very far from
the equilibrium geometries, are probed.

On the theoretical side, efficient methods have been
developed in the near past for the accurate calculation of
eigenvalues and eigenfunctions of the vibrationally very
excited states necessary to interpret these new spectra,
and also to carry out time-dependent quantum dynami-
cal studies [12,13]. Among the first, those based on the
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discrete variable representation (DVR) method [14] de-
serve special mention for their outstanding performance.

In this high energy regime, the interpretation of the
corresponding wave functions in simple terms is much
more difficult. For moderate excitation energies, choosing
adequate (curvilinear) coordinate system [15] can help.
But on the other hand, for very high vibrational energies
some wave functions appear localized on classical periodic
orbits (PO) of the system [16]. Periodic orbits are classi-
cal trajectories which retrace themselves. In the case that
they correspond to a stable motion, that is, when small de-
viations in the initial conditions result in altered motion
which remains close to the initial orbit, the localization
has been explained as the result of a focalization effect
[12].

More difficult to understand, still remaining an un-
solved question in the field of quantum chaos [17], is the
localization by unstable POs, since the dynamics in their
vicinity is such that neighbour trajectories diverge expo-
nentially [18]. This localization effect, known also as “scar-
ring”, was first discussed by Heller [19] in his numerical
study of very highly excited states of the stadium billiard
[20], a system that exhibits all properties in the hierarchy
of chaos. This observation came as a surprise, since for
the high lying states of classically chaotic systems, a more
uniform distribution of the quantum density was expected
[21], according to the results of Shnirelman theorem [22].

The pioneering work of Gutzwiller [23] some years be-
fore had demonstrated the importance of POs in the quan-
tization of classically chaotic systems. Unstable POs con-
stitute the only remnants of order in systems exhibiting
hard chaos. Some important advances have been made
since them. For example, Bogomolny [24] demonstrated,
using Gutzwiller’s summation formulas, that the quantum
probability density smoothed over small ranges in energy
and space has, superimposed to the microcanonical dis-
tribution term, contributions localized around closed clas-
sical paths. This implies that scars are not in general a
property of single eigenfunctions, but should generically
be associated with groups of eigenstates, defined by the
aforementioned energy range. Actually, it was shown by
our group [25] how the right combination of eigenfunctions
that is scarred by a particular PO can be constructed.
Moreover, we also studied [26] the systematics of scar for-
mation at its most elementary level by considering cor-
relation diagrams taking ~ as a parameter. In this way,
the frontier between chaos and order could be attained,
and showed how only two interacting states are needed to
form a scar. The chaotic character of a quantum state can
be assesed by examination of the distribution of zeros [27]
of the corresponding Husimi function [28]. This property,
which has not received as much attention in the literature
as the corresponding maxima, constitutes a very sensitive
criterion: in the case of regular states the zeros of the
Husimi function all lie on a line; while for more stochastic
ones the zeros appear uniformly distributed over the whole
available phase space. Scarred states can also be detected
with this method [29].

Periodic orbits can also be used to numerically com-
pute spectra [30,31]. When the dynamics are very com-
plex it can only be fully resolved if long time propagations
are considered [32]; conversely if only low resolution is re-
quired merely the details of short trajectories or pieces of
trajectories are needed [33,34].

In this paper we discuss some implications of the order-
chaos transition in molecular spectra, specially in relation
to how this is reflected in the structure of the correspond-
ing wave functions as energy increases. For this purpose
we will make use of some novel techniques, based in the
propagation of wave packets that have been developed in
our laboratory.

The organization of the paper is as follows. In Section 2
we describe the model for the LiCN molecule used in our
study, and the different type of calculations reported. In
Section 3 some results corresponding to the simulation of
SEP-type spectra are presented and analyzed using clas-
sical and quantal arguments. Finally, in Section 4 we con-
clude by summarizing our conclusions and remarks.

2 Model and calculations

As our working example, we choose the vibrational dy-
namics of a triatomic molecule: the LiNC/LiCN isomer-
izing system, which has been extensively studied in the
literature [35]. This molecule presents two stable isomers,
corresponding to the linear configurations, Li–NC and
Li–CN, which are separated by a relatively modest en-
ergy barrier of 3454 cm−1. The motion in the bending
coordinate is very floppy, and then the Li atom can easily
rotate around the CN fragment. Thus, chaos sets in at low
values of the excitation energy. Also, the C–N vibrational
frequency is very high and separates from the remaining
modes of the system.

Accordingly, the dynamics of the system can be ade-
quately studied by a two degrees of freedom model, where
the CN distance is kept frozen at its equilibrium value of
re = 2.186 a.u. The vibrational (total J = 0) Hamiltonian
in scattering or Jacobi coordinates is given by

H =
P 2
R

2µ1
+

1

2

(
1

µ1R2
+

1

µ2r2

)
P 2
θ + V (R, θ), (1)

where R is the distance between the Li atom and the
centre of mass of the CN fragment, r the C–N distance,
θ the angle formed by these two vectors, and µ−1

1 =
m−1

Li + (mC + mN)−1 and µ−1
2 = m−1

C + m−1
N the Li–CN

and C–N reduced masses respectively.
The potential energy surface is a nine terms expansion

in Legendre polynomials

V (R, θ) =
9∑

λ=0

Pλ(cos θ)vλ(R) (2)

where the coefficients vλ contain short and long-range con-
tributions, and have been taken from the literature [36].
Very recently, a new ab initio surface has been reported
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Fig. 1. Contour plot of the potential energy surface for the
LiNC/LiCN isomerizing system. The minimum energy path
connecting the two stable linear isomers (Li–NC at θ = 180◦

and Li–CN at 0◦), and the initial Gaussian wave packet used
to generate the spectrum of Figure 2 are also shown.

[37] that includes electron correlation at MP4 level. The
differences between them are small, except for the exis-
tence in the new one of a stable T -shaped minimum in
the region around (R, θ) = (3.65 a.u., 110◦), where the
surface of Essers et al. only shows a plateau. However,
this difference is dynamically not very significant since the
motion around this plateau gets stabilized by an adiabatic
separation mechanism for high value of the excitation in
the R coordinate, as has been demonstrated by us [38].
In Figure 1 a contour plot of the Essers et al. energy sur-
face is presented. The two stable isomers LiNC and LiCN,
appearing respectively at (R, θ) = (4.3487 a.u., 180◦) and
(4.7947 a.u., 0◦) are clearly visible as potential wells sepa-
rated 2281 cm−1. The minimum energy path, Re(θ), con-
necting these two wells is also been plotted as a dotted
line.

Classical trajectories have been calculated using a
fixed step Gear algorithm for the numerical integration
of Hamilton equations of motion corresponding to equa-
tion (1). The isomerization process can be followed by
considering the motion along the θ coordinate. This is
most significantly done by means of Poincaré surfaces of
section (SOS) in phase space. Usually, SOS for systems of
coupled oscillators are obtained by plotting one coordinate
and its conjugate momentum every time that the other co-
ordinate crosses through its equilibrium distance, and the
momentum has a predetermined sign. In our case, this
corresponds to crossing the minimum energy path, Re(θ),
and this causes a new problem to rise since Re varies with
θ. Thus, in order to make the SOS an area preserving map,
the following set of canonical coordinates

ρ = R−Re(θ), ψ = θ,

Pρ = PR, Pψ = Pθ + PR

(
∂Re

∂θ

)
θ=ψ

, (3)

have been used [39]. The SOS corresponds then to the
successive intersections of each trajectory with the ρ = 0
plane, taking only those points for which Pρ is in a prede-
termined branch of the second degree equation

H(ρ = 0, ψ, Pρ, Pψ) = E. (4)

The quantum vibrational energy levels and corresponding
wave functions for the LiNC/LiCN system were calculated
using the program of Bačić and Light [40], which uses a
DVR representation in the θ coordinate and a distributed
Gaussian basis (DGB) in the radial coordinate R. A pre-
diagonalization along each θ ray prepares the final basis
set, that with 2016 elements rendered the 900 low lying
eigenvalues converged to within 0.1 cm−1.

A very convenient way to compare the quantum results
with classical trajectory calculations is to consider wave
packets evolution. The center of these non-stationary func-
tions follows during a certain time close to classical paths,
without excessive spreading of the packet. In our case the
dynamics of such wave packets can be calculated quite
easily by projection of the initial function into the basis
set formed by the stationary eigenstates of the system, |n〉,
followed by the application of the corresponding evolution
operator

|Φ(t)〉 = e−iĤt/~|Φ(0)〉 =
∑
n

|n〉〈n|Φ(0)〉 e−iEnt/~. (5)

This evolution can be followed either in the time domain
by the recurrences of the corresponding correlation func-
tion:

C(t) = 〈Φ(0)|Φ(t)〉, (6)

or in the energy domain with the corresponding spectrum:

I(E) =
∑
n

|〈n|Φ(0)〉|2 δ(E −En). (7)

These two quantities are related by Fourier transform [32],

I(E) =
∑
n |〈n|φ(0)〉|2 δ(E −En)

= (1/2π~)
∫∞
−∞〈Φ(0)|Φ(t)〉 e−iEt/~,

(8)

and low resolution versions of equation (7) can be obtained
by cutting the associated integration at a finite time [25],
or using appropriate filtering [41].

3 Results

In this section we discuss some results obtained from the-
oretical simulations performed in the spirit of the SEP
spectroscopic technique [11]. An initial wave packet is pre-
pared in a location far from the equilibrium position of
the molecule, and the corresponding Franck-Condon co-
efficients calculated. These coefficients are related to the
dynamics of the packet [12], thus revealing details of the
phase space region in which it started.
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Fig. 2. Stick spectrum and low resolution version of it for a
Gaussian wave packet initially centered on the point: (R, θ)0 =
(3.89 a.u., 87.9◦). The low resolution spectrum consists of a
series of regularly spaced bands that have been marked A–N.

Let us discuss, for example, the results generated from
the minimum uncertainty coherent state

|Φ(0)〉 =
(αRαθ

π~

)1/2

exp
[
−α2

R(R −R0)2/2~
]

× exp
[
−α2

θ(θ − θ0)2/2~
] (9)

initially located at (R, θ)0 = (3.89 a.u., 87.9◦) and having
width parameters (αR, αθ) = (8.03, 7.51) in a.u. With this
choice the energy at the center of the packet is 2500 cm−1.
To help in the interpretation we have plotted in Figure 1
the contour corresponding to half-height width superim-
posed to the potential energy surface.

The corresponding stick spectrum, calculated by
means of equation (7), is presented in Figure 2. When ex-
amined it can be divided into three regions. For energies
smaller than ∼ 2100 cm−1 the spectrum is quite simple.
It is formed by a progression of five lines which corre-
spond to the transitions to states increasingly excited in
the bending mode [42]; actually (nR, nθ) = (0, nb) with
nb = 10−18.

The corresponding wave functions are shown in the
first five pannels of Figure 4. They are all very regular [3],
appearing the density of probability distributed along the
minimum energy path, and being the quantum numbers
readily assignable.

Above 2100 cm−1 the spectrum becomes less simple
to understand: the distribution of energy differences and
intensities is more irregular, and no simple progression
can be identified. However, the spectrum becomes simpler
when low resolution versions of it are considered. For ex-
ample, we have also plotted in Figure 2, superimposed to
the infinite precision stick spectrum, a low resolution ver-
sion obtained by convolution with Lorentzian functions
100 cm−1 wide. In it, a progression of bands regularly
spaced is clearly apparent. These bands are formed by
clusters of functions, in which the effect of the irregular

Fig. 3. Classical composite Poincaré surface of section for the
LiNC/LiCN system at energies of: (a) 1800 cm−1, and (b)
2500 cm−1. The squares and triangles mark, respectively, the
position of the elliptic and hyperbolic fixed points correspond-
ing to the 1:4 periodic orbit of LiNC relevant for the discussion
presented in the text.

distribution of intensities and spacings has been averaged
out, thus emerging a much more clear pattern. Obviously,
these clusters do not contain too many elements, because
we are in a regime in which the density of states is low.
However, the effect that we are describing is robust, and
persists even when the density of states is very high; see
for example discussion in reference [25].

In the energy range between ∼ 2100−2500 cm−1 there
appear two bands consisting mainly of just a pair of func-
tions. When examined, these pairs correspond to states
(0, 10)–(1, 6) and (0, 11)–(1, 7) respectively, which means
that they are “connected” by a 1:4 Fermi resonance. The
origin of this interaction has been presented elsewhere [26].
In that paper state correlation diagrams varying ~ were
considered. By doing that, the system can be made artifi-
cially more or less chaotic at will. When ~ is decreased the
phase space area needed to “accommodate” a quantum
state decreases, and the behaviour of the system becomes
more regular. In this way, the mixing exhibited by com-
plex states can be disentangled, just in the opposite way
as regular states are mixed in bands F and G of Figure 2
giving scarred structures.

In the third region of the spectrum, corresponding to
E > 2500 cm−1, the bands involve a variable number
of states; being even some of them, like bands H and I,
formed by a single contribution.
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Fig. 4. Wave functions corresponding
to the bands A–N appearing in the
spectrum of Figure 2. The have been
calculated with the projection tech-
nique involved in equation (10). The
first five functions correspond to the
regular states [42] (nR, nθ) = (0, nb)
with nb = 10−18. The axis used are
the same as in Figure 1. Negative val-
ues of the wave functions are plotted in
dashed line.

This behaviour can be compared with the classical
counterpart. For that purpose, we show in Figure 3 two
composite SOS computed at vibrational energies of 1800
and 2500 cm−1, respectively. At the smaller energy all the
dynamics are regular, with SOS formed mainly by closed
lines around the fixed point corresponding to the the R
motion in the Li–NC isomer [(ψ, Pψ) = (180◦, 0)]. Only
a narrow band of chaos near the border of the available
phase space, caused by the destruction of the outermost
invariant tori, is visible.

For E = 2500 cm−1 the situation is very different. At
this energy the LiCN well is barely accessible, showing an
conspicuous 1:4 resonance. On the other side, in the LiNC
region chaos dominates, and two very distinct regions can
be distinguished: the inner one, around the stable Li–NC
isomer, which is regular, and the outer one that corre-
sponds to chaotic motion. In this chaotic region we have

also marked (with squares and triangles) two POs, stable
and unstable respectively, that correspond to a 1:4 reso-
nant chain of islands which is relevant for the discussion
below.

This transition from order to chaos reflects at the
quantum level. As the energy increases the area of the
regular region first increases due to the growth of the avail-
able phase space, and then starts to decrease due to the
destruction of invariant tori dictated by the KAM theo-
rem. As a result, up to a certain energy value the states
have enough “phase space room to accommodate them-
selves” in the regular region and the increasingly excited
bending states look regular, presenting a very clear nodal
pattern. For energies above that value the bending states
have a significant probability density extending into the
chaotic region, and regular states with more excitation in
the bending mode (approximately more than 22 quanta)
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are no longer found in the quantum calculations. In con-
figuration space this would correspond to states trying to
extend beyond the (relatively) sharp curvature in the min-
imum energy path taking place at θ = 99◦ (see Fig. 1).
This is in correspondence with the classical bobsled effect
[43], by which trajectories coming from the LiNC well and
passing beyond that point will inevitably pick up some
excitation in the stretching mode in their way back. It is
very difficult to make the present argument more quanti-
tative due to the well-known fact that quantum mechanics
is somewhat “sluggish” in its response to classical chaos
[6,44]. Accordingly, the states which are very extended in
θ, present more complicated nodal patterns, some of them
being scarred along the stable and unstable trajectories
corresponding to the 1:4 PO of Figure 3.

A very useful insight about the nature of the bands
observed in the low resolution spectrum of Figure 2 can
be gained by using a method developed recently by us
[25,34]. Since they correspond to structures which are
not well-defined in energy, they must have some sort of
resonant-like character. This character can be unveiled
by using appropriate calculation technique from reso-
nance theory. For example, one can obtain the corre-
sponding wave functions by Fourier transforming the time-
dependent wave packet |Φ(t)〉 using a finite time span

|Ψk〉 =
1

2π~

∫ τ

−τ
dt |Φ(t)〉 e−iEkt/~

=
∑
n

|n〉〈n|Ψ(0)〉
sin[(Ek −En)τ/~]

π(Ek −En)
, (10)

where Ek represents the energy of the center of the kth
band, and τ is of the order of the period of the scarring
PO.

In Figure 4 the results corresponding to the different
bands appearing in Figure 2 are presented. As can be seen,
the wave functions corresponding to bands F–N are more
complex than the other five, at least in the sense that
their probability densities do not follow the minimum en-
ergy path. Actually, if examined closely their maxima ap-
pear located, with very good approximation, on the path
corresponding to the 1:4 unstable PO of the LiNC/LiCN
system mentioned above (triangles in Fig. 3). To guide the
eye, this orbit (for an energy of 2500 cm−1) has also been
plotted superimposed to the wave functions in the pan-
nels forming Figure 4. This is reasonable since the initial
location of the wave packet originating the spectrum of
Figure 2 was initiated very close to the turning point of
the PO (compare Figs. 1 and 4).

4 Summary and conclusions

In conclusion, in this paper we have presented a study
on the relationship existing between dynamics and spec-
troscopy, by presenting an example corresponding to the
molecular vibrations of the LiNC/LiCN molecular system.
This system has been extensively studied in the literature
in connection with quantum chaos. It can be described

quite realistically with a simple model, for which the mo-
tion in the angular bending coordinate is very floppy, so
that chaos sets in at low excitation energies. We have il-
lustrated how the short term dynamics of a wave packet
reflects in the low resolution features of molecular spec-
tra such as SEP. For a wave packet initially located in a
very chaotic region, we have shown how a particular PO
influences all the dynamics, and the low resolution bands
of the resulting spectrum correspond to wave functions
structures which are profoundly influenced by this PO.
These bands can be formed by a single, and then already
scarred, state or more, depending on the energy range we
are considering. Obviously, the very low energy end of the
spectrum, for which the PO we are referring to has not
even appeared, is totally regular.

We think that the theoretical tools we have discussed
in this paper, which continue the path initiated by others
[12,23,24,33], constitute a great help in the understand-
ing of the structure observed in the spectra of classically
chaotic systems.

This work has been supported in part by DGES (Spain) under
Projects No. PB95-425 and PB96-76.
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40. Z. Bačić, J. Light, J. Chem. Phys. 85, 4594 (1986).
41. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T.

Vettering, Numerical Recipes: The Art of Scientific Com-
puting (Cambridge University Press, Cambridge, 1986).

42. Although the range spanned by the angular variable θ goes
from 0 to π we use for the regular states the notation cor-
responding to a harmonic description, in which the quan-
tum bending number corresponds to double the number
of nodes in θ. The quantum number can only be even due
to the fact that we are only considering states with total
angular momentum equal to zero (J = 0). See discussion
in I.N. Levine, Molecular Spectroscopy (Wiley, New York,
1975), p. 271.

43. W.H. Miller, J. Chem. Phys. 72, 99 (1980).
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